Flavocytochrome P450 BM3 and the origin of CYP102 fusion species.

نویسندگان

  • H M Girvan
  • T N Waltham
  • R Neeli
  • H F Collins
  • K J McLean
  • N S Scrutton
  • D Leys
  • A W Munro
چکیده

Flavocytochrome P450 (cytochrome P450) BM3 is an intensively studied model system within the P450 enzyme superfamily, and is a natural fusion of a P450 to its P450 reductase redox partner. The fusion arrangement enables efficient electron transfer within the enzyme and a catalytic efficiency that cannot be matched in P450 systems from higher organisms. P450 BM3's potential for industrially relevant chemical transformations is now recognized, and variants with biotechnological applications have been constructed. Simultaneously, structural and mechanistic studies continue to reveal the intricate mechanistic details of this enzyme, including its dimeric organization and the relevance of this quaternary structure to catalysis. Homologues of BM3 have been found in several bacteria and fungi, indicating important physiological functions in these microbes and enabling first insights into evolution of the enzyme family. This short paper deals with recent developments in our understanding of structure, function, evolution and biotechnological applications of this important P450 system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3.

Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 cataly...

متن کامل

Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme.

Since its discovery in the 1980s, the fatty acid hydroxylase flavocytochrome P450 (cytochrome P450) BM3 (CYP102A1) from Bacillus megaterium has been adopted as a paradigm for the understanding of structure and mechanism in the P450 superfamily of enzymes. P450 BM3 was the first P450 discovered as a fusion to its redox partner--a eukaryotic-like diflavin reductase. This fact fuelled the interest...

متن کامل

Subzero-temperature stabilization and spectroscopic characterization of homogeneous oxyferrous complexes of the cytochrome P450 BM3 (CYP102) oxygenase domain and holoenzyme.

We describe herein for the first time the formation and spectroscopic characterization of homogeneous oxyferrous complexes of the cytochrome P450 BM3 (CYP102) holoenzyme and heme domain (BMP) at -55 degrees C using a 70/30 (v/v) glycerol/buffer cryosolvent. The choice of buffer is a crucial factor with Tris [tris(hydroxymethyl)aminomethane] buffer being significantly more effective than phospha...

متن کامل

Novel haem co-ordination variants of flavocytochrome P450BM3.

Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of t...

متن کامل

Are branched chain fatty acids the natural substrates for P450(BM3)?

Branched chain fatty acids are substrates for cytochrome P450(BM3) (CYP102) from Bacillus megaterium; oxidation of C15 and C17 iso and anteiso fatty acids by P450(BM3) leads to the formation of hydroxylated products that possess high levels of regiochemical and stereochemical purity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 34 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2006